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Abstract: In the competitive landscape of Attended Home Deliveries in e-commerce, retailers
must balance profitability with operational efficiency. Dynamic pricing strategies for delivery time
slots are a key lever to achieve this balance, influencing both revenue generation and logistics costs.
This white paper presents the application of the TRUST-AI1 concept to online retail, addressing
a dynamic Time Slot Pricing Vehicle Routing Problem. By modeling this challenge as a Markov
Decision Process and solving it using symbolic expressions evolved through a Genetic Programming
algorithm, we develop a learning framework that generates explainable and effective decision poli-
cies. Our approach goes beyond merely setting optimal delivery prices—it seeks to strategically
nudge customers toward time slots that enhance route efficiency, ensuring multiple deliveries can be
accommodated in the same trip. The goal is to maximize total profit, defined as the sum of revenue
obtained from delivery fees and basket values of customers who proceed with their purchases, mi-
nus transportation costs, which include both fixed fleet costs and variable costs per kilometer. By
integrating explainable AI into pricing and logistics decision-making, our methodology empowers
retailers to dynamically adjust delivery fees while improving route consolidation, ultimately driving
higher profitability and customer satisfaction.

1 Challenge
The rapid growth of online retail has intensified the complexity of efficiently managing the delivery
of deliveries to the home. In this business sector, retailers set dynamic delivery fees that account for
multiple factors, including customer preferences, demand fluctuations, and operational constraints

1TRUST-AI is a project funded by the European Union’s Horizon 2020 research and innovation programme. More
details available at https://cordis.europa.eu/project/id/952060.
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such as fleet capacity (Agatz et al. 2011). In this challenge, our primary objective is to establish an
optimized pricing strategy that maximizes total profit, comprising basket value and delivery fees,
while minimizing logistics costs, comprising transportation and fleet costs.

The problem can be formulated as a Dynamic Time Slot Pricing Problem (DTSPP), where
an online retailer must determine the best pricing strategy for each customer to maximize both
revenue and logistics efficiency. Each customer, upon checkout, is presented with a set of available
delivery slots, each priced differently based on demand. Customers may choose a slot or abandon
the purchase if there is no suitable option.

This problem is inherently sequential and uncertain, requiring decisions to be made dynamically
as new customers arrive. Moreover, on the retailer side, optimal time slot pricing must account
for vehicle routing constraints, ensuring that deliveries are scheduled in a way that minimizes
transportation costs while maintaining a high service level, profiting from an available fixed fleet of
capacitated vehicles. The challenge extends beyond simply assigning prices, it involves influencing
customer behavior to create delivery routes that reduce operational costs by consolidating orders
efficiently (Klein et al. 2018). A representation of this sequential decision problem is presented in
Figure 1.

Traditional pricing models often overlook the logistical impact of customer selections, leading to
inefficiencies in routing and increased delivery costs. By considering customer choice probabilities
and vehicle routing constraints, a more intelligent pricing strategy can be deployed, ensuring that
profitable and logistically efficient decisions are made throughout the booking horizon.

This problem can be addressed by an AI-driven approach capable of learning from past decisions
and dynamically adapting to new customer arrivals, ensuring that pricing strategies align with both
customer preferences and logistical efficiency.

Figure 1: Overview of the DTSPP and its methodological components.
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2 Solution
To address this challenge, we employ the TRUST-AI concept, which consists on a guided-empirical
learning process to obtain explainable symbolic AI models.

Our approach to solving the dynamic time slot pricing problem integrates machine learning tech-
niques with logistics optimization to create an intelligent, explainable, and adaptable pricing model.
By leveraging a Markov Decision Process (MDP) formulation within the OpenAI Gym framework,
we ensure that decisions are made sequentially, adapting to real-time customer behavior and logis-
tics constraints. Unlike conventional pricing methods, our approach utilizes symbolic expressions
to determine optimal pricing actions, which allows for greater transparency and adaptability.

A key innovation of this methodology is its ability to develop integrated pricing policies that
consider both customer preferences and logistical efficiency. Traditional prescriptive pricing models
often neglect the operational impact of customer choices, resulting in inefficient route planning
and increased delivery costs. Our approach directly addresses this issue by balancing revenue
maximization with fleet and cost optimization.

Furthermore, this framework is designed to involve operations managers in the decision-making
process. By defining terminal and mathematical operators for symbolic expressions, managers
can fine-tune policies to align with business objectives. This unique aspect enables businesses to
maintain control over pricing complexity, ensuring that AI-generated policies remain actionable and
interpretable (Adadi and Berrada 2018; Murdoch et al. 2019).

2.1 Problem Formulation as an MDP
Our approach is built on an MDP formulation within the OpenAI Gym framework, enabling a
structured environment for sequential decision-making under uncertainty. This formulation pro-
vides a controlled simulation setting to evaluate different pricing policies and their impact on both
customer behavior and logistics constraints.

The key components of our MDP are as follows. State Space: Represents the logistics sys-
tem conditions, including current order distribution, fleet availability, and time-dependent demand
trends. Action Space: Defines the possible pricing panels to be presented to customers, influenc-
ing their selection of time slots. Transition Function: Captures probabilistic customer responses
to pricing, incorporating customer willingness-to-pay models and historical demand patterns. Re-
ward Function: Quantifies profitability including immediate revenue from fees and basket values
against longer-term cost considerations such as delivery efficiency and fleet utilization.

This formulation enables a pricing strategy to be evaluated, which is a key component of every
policy learning framework.

2.2 Policy Learning via Genetic Programming
A key innovation in our method is the use of symbolic expressions to score different price panels
(actions). Unlike traditional prescriptive models, which often rely on black-box machine learn-
ing techniques, our approach enables the generation of interpretable policies that can be directly
inspected and adjusted by operations managers.

To derive symbolic expressions that serve as decision policies for price panel selection, we use Ge-
netic Programming (GP) (Koza 1994). The learning process iteratively refines symbolic expressions
to maximize cumulative rewards, learning which strategies yield optimal profitability and efficient
routing outcomes. An example of a decision policy is represented by mathematical expression (1).
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The four features used in this sample decision policy include: p1, the delivery fee of the preferred
customer time slot; oi, a measure of occupation imbalance between all time slots subject to planning
(i.e., the higher the volume of orders of a particular time slot compared to others, leads to higher
values of oi); n, represents the number of customers who already booked a time slot; and p, the
average delivery fee of the panel presented to the customers.

In the context of the DTSPP, the candidate price panel that maximizes expression (1) is the
one presented to the customer. Therefore, this decision policy previliges increasing the delivery fee
of the customer’s preferred time slot, while trying to minimize the imbalance in the selection of
time slots, measured by feature oi. GP also learns a term concerned with increasing the overall
delivery fee (through feature p) that decreases its importance the number of customers already
booked increases (through term 1/n).

This approach entails three key aspects. Explainability-by-Design: Symbolic expressions
provide human-readable pricing policies, allowing operations managers to understand and refine
decision-making rules. Integrated Pricing Policy: The learned policies incorporate both cus-
tomer preferences and logistics constraints, ensuring that pricing not only maximizes revenue but
also enhances route efficiency. Adaptive Decision Logic: The learning framework is capable
of incorporating and adapting to different operational manager preferences, as well as different
logistics contexts (e.g., account for different customer concentration).

This rare application of symbolic expressions in prescriptive problems allows for greater trans-
parency in AI-driven decision-making, bridging the gap between automated optimization and busi-
ness expertise.

2.3 Integration into TRUST Platform
The proposed learning framework is implemented within the TRUST platform2, leveraging cus-
tomizable dashboards for training, testing and visualizing symbolic policies. The interactive frame-
work supports human-algorithm collaboration, enabling iterative refinement and adaptation to
business needs. The platform allows for scenario analysis, comparing different pricing policies to
identify trade-offs between revenue maximization and cost minimization, as well as symbolic ex-
pression size and complexity. Figure 2 provides a look at TRUST’s platform being parametrized to
derive pricing policies for the DTSPP.

The generated runs can then be inspected through visualizations. Figure 3 provides two vi-
sualizations plotted for a given training session. Figure 3 (a) provides an approximation front
contrasting model performance against model complexity. Alternatively, Figure 3 (b) displays the
approximation front comparing the revenue accrued by each model against the resulting variable
cost.

2For more information on this Symbolic AI platform, the reader is referred to https://gitlab.inesctec.pt/
trust-ai/framework
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Figure 2: A sample run of TRUST platform being used to derive decision policies for the DTSPP.

Figure 3: Examples of visualizations provided by the TRUST platform to inspect learned AI models.

3 Results
To validate the proposed learning framework in an online retail setting, we conducted three val-
idation workshops in collaboration with the retailer who inspired this work. These workshops
allowed us to assess the effectiveness of our approach in a real-world context, gathering feedback
from industry professionals to refine and optimize both the realism of the simulation environment
and the pricing policies. The sessions focused on evaluating the explainability and adaptability of
the symbolic expressions, ensuring that they aligned with both business objectives and operational
constraints. Several important achievements can be emphasized from this relationship including a
research institute, a consultancy company, and a retailer:

Profit Maximization: The learned symbolic expressions effectively balance revenue generation
(basket value + delivery fees) with transportation cost minimization by encouraging customer
selections that optimize route consolidation.

Explainability and Interpretability: Unlike black-box AI models, the GP-based approach
provides human-readable policies that allow business stakeholders to understand, trust, and refine
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pricing strategies.
Efficient Resource Utilization: The dynamic pricing model improves vehicle routing effi-

ciency by influencing customer selections toward cost-effective delivery slots, reducing fleet opera-
tional costs and optimizing last-mile logistics.

Adaptability to Business Constraints: The methodology can be customized to incorporate
retailer-specific objectives, such as sustainability considerations (e.g., encouraging off-peak delivery
windows) or priority customer handling.

Scalability and Robustness: The model is designed to adapt to fluctuations in customer
demand, enabling retailers to dynamically optimize pricing strategies as operational constraints
evolve.

Beyond discussing the TRUST-AI concept, the DTSPP simulator, and explainability concerns
(e.g., whether an operations manager could devise a decision policy based on domain knowledge),
we validated our methodology by applying it to a toy problem instance and analyzing the results.
Figure 4 compares the results obtained using three distinct decision policies:

Tactical (As Is): Static approach where the retailer sets time slot prices periodically based on
expected occupancy to achieve a break-even situation, without adjusting prices for each customer
arrival.

Myopic: Treedy dynamic approach in which, at each customer arrival, a time slot price panel
that maximizes the expected revenue is presented, while disregarding subsequent impact on distri-
bution costs.

Dynamic: Decision policy represented by expression (1) learned using GP to balance revenue
maximization with operational efficiency.

Figure 4: Comparison of three decision policies applied to a toy instance of the DTSPP.

As illustrated in Figure 4, transitioning from a static decision policy to dynamic approaches
results in an expected increase in operational profit of 3.4% and 8.6% for the myopic and dynamic
strategies, respectively. The reduction in fixed costs observed in the myopic approach, relative to
the tactical strategy, can be attributed to customers being incentivized to select their preferred
time slots, thereby enhancing delivery consolidation within the same vehicles.

Furthermore, a comparison between the myopic and dynamic approaches confirms that our GP-
based methodology effectively learned the opportunity cost associated with each pricing decision.
Notably, while incurring only a 0.09% reduction in revenue and achieving an 8.54% decrease in fixed
costs, our decision policy successfully maximized revenue while accounting for the impact of each
pricing decision on overall distribution costs. Ultimately, when benchmarked against the retailer’s
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current strategy, our approach achieved an 11.76% reduction in fixed costs.

4 Conclusion
The application of TRUST-AI in online retail showcases the potential of explainable AI in solving
complex prescriptive problems. By leveraging symbolic expressions for dynamic time slot pricing,
retailers can enhance profitability while maintaining operational efficiency. This approach provides
a transparent, adaptable, and scalable solution to the challenges of last-mile delivery optimization,
bridging the gap between pricing strategy and logistics execution.
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